Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.

نویسندگان

  • Christophe Renault
  • Lionel Nicole
  • Clément Sanchez
  • Cyrille Costentin
  • Véronique Balland
  • Benoît Limoges
چکیده

In this work, we demonstrate that chronoabsorptometry and more specifically cyclic voltabsorptometry are particularly well suited techniques for acquiring a comprehensive understanding of the dynamics of electron transfer/charge transport within a transparent mesoporous semiconductive metal oxide film loaded with a redox-active dye. This is illustrated with the quantitative analysis of the spectroelectrochemical responses of two distinct heme-based redox probes adsorbed in highly-ordered mesoporous TiO2 thin films (prepared from evaporation-induced self-assembly, EISA). On the basis of a finite linear diffusion-reaction model as well as the establishment of the analytical expressions governing the limiting cases, it was possible to quantitatively analyse, predict and interpret the unusual voltabsorptometric responses of the adsorbed redox species as a function of the potential applied to the semiconductive film (i.e., as a function of the transition from an insulating to a conductive state or vice versa). In particular, we were able to accurately determine the interfacial charge transfer rates between the adsorbed redox species and the porous semiconductor. Another important and unexpected finding, inferred from the voltabsorptograms, is an interfacial electron transfer process predominantly governed by the extended conduction band states of the EISA TiO2 film and not by the localized traps in the bandgap. This is a significant result that contrasts those previously observed for dye-sensitized solar cells formed of randomly sintered TiO2 nanoparticles, a behaviour that was ascribed to a particularly low density of localized surface states in EISA TiO2. The present methodology also provides a unique and straightforward access to an activation-driving force relationship according to the Marcus theory, thus opening new opportunities not only to investigate the driving-force effects on electron recombination dynamics in dye-sensitized solar cells but also to study the electron transfer/transport mechanisms in heterogeneous photoelectrocatalytic systems combining nanostructured semiconductor electrodes and heterogeneous redox-active catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2 Nanoparticle Films: Evidence Against Multiple Trapping in Exponential Conduction-Band Tails

The temperature and photoexcitation density dependences of the electron transport dynamics in electrolytefilled mesoporous TiO2 nanoparticle films were investigated by transient photocurrent measurements. The thermal activation energy of the diffusion coefficient of photogenerated electrons ranged from 0.19–0.27 eV, depending on the specific sample studied. The diffusion coefficient also depend...

متن کامل

Subpicosecond photoinduced charge injection from "molecular tripods" into mesoporous TiO2 over the distance of 24 angstroms.

Extended rigid tripodal sensitizers were used to investigate the rate of long-distance photoinduced charge transfer from the MLCT excited states of RuII-based chromophores into mesoporous TiO2 films. The distance between the RuII center and the surface of the semiconductor was 24 A. Rapid biexponential charge injection with a major subpicosecond component as fast as 240 fs was observed upon fem...

متن کامل

IMPACT OF THE MORPHOLOGY OF TiO2 FILMS AS CATHODE BUFFER LAYER ON THE EFFICIENCY OF INVERTED-STRUCTURE POLYMER SOLAR CELLS

Semiconducting metal-oxide TiO2 films were deposited on FTO substrates via a sol-gel method to fabricate inverted polymer solar cells. The pore size of the TiO2 films was effectively controlled by using the sols different in stirring time. The solar cell was constructed with a fullerene derivative interlayer and a photoactive mixture of poly(3hexylthiophene) (P3HT) and phenyl-C61-butyric acid m...

متن کامل

Dynamics of Interfacial Charge Transfer States and Carriers Separation in Dye-Sensitized Solar Cells: A Time-Resolved Terahertz Spectroscopy Study

Electron injection from a photoexcited molecular sensitizer into a wide-bandgap semiconductor is the primary step toward charge separation in dye-sensitized solar cells (DSSCs). According to the current understanding of DSSCs functioning mechanism, charges are separated directly during this primary electron transfer process, yielding hot conduction band electrons in the semiconductor and positi...

متن کامل

High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 16  شماره 

صفحات  -

تاریخ انتشار 2015